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A large number of recent papers have employed panel data to study PPP, including Abuaf

and Jorion (1990), Canzoneri, Cumby and Diba (1996), Cumby (1996), Frankel and Rose (1996),

Jorion and Sweeney (1996), Liu and Maddala (1996), Lothian (1996), MacDonald (1996),

O’Connell (1996), Oh (1996), Papell (1996), Wei and Parsley (1996), and Wu (1996).  The

motivation for using panel data is that it might increase the power of tests for PPP.  It is well

known that when the rate of convergence for a stationary series is very slow, long time series are

needed to rule out the hypothesis that the series follows a random walk.  Typically the length of

time needed is much greater than the twenty-odd years that have passed since the decline of the

Bretton Woods system and the move to floating exchange rates among major industrialized

countries.  One approach to solving the power problem is to use very long time series, but, as

Frankel and Rose (1996) point out, those long time series encompass periods in which nominal

exchange rate regimes shifted from floating to fixed and back again.  The panel approach allows a

different way of increasing power while only using post-Bretton Woods data, by pooling across

many different real exchange rates.

This paper presents a general framework to address several issues that have arisen in

recent work that investigates purchasing power parity (PPP) and other inter-regional relative price

movements:  (1)  How can we model real exchange rate movements in a consistent manner, so

that our model for the real exchange rate for country B relative to country C is commensurate

with our models for country A/ country B and country A/ country C real exchange rates?  For

example, is there a way to avoid having our tests depend on which country is the “base country”?

(2)  How should we handle correlation across real exchange rates in panel tests of PPP?  (3)  Are

speeds of adjustment toward PPP different for intra-national, cross-national and cross-continental

real exchange rates?  (4)  Is the innovation variance different for intra-national, cross-national and
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cross-continental real exchange rates; and, if so, how does that influence how we model and test

PPP?  (5)  What is the advantage of panel tests for stationarity of real exchange rates versus tests

of cointegration of price levels expressed in a common currency?

One issue that has arisen is what the base currency should be in tests for PPP.  Typically

real exchange rates are calculated relative to the U.S.  But, some studies have found that PPP

holds better between European countries than between European countries and the U.S.  (See, for

example, Edison, Gagnon, and Melick (1994), Jorion and Sweeney (1996), Canzoneri, Cumby

and Diba (1996) and Papell (1996)).  This raises a question:  if, for example, the German/Swiss,

German/Canadian and German/U.S. real exchange rate panel is stationary, how could the

U.S./Swiss, U.S./Canadian and U.S./German panel be non-stationary?  With real exchange rates

expressed in logs, the elements of the latter panel are just linear combinations of the former panel.

If all elements of one panel are stationary, then all elements of the other panel must be stationary.1

Most of the panel studies of PPP have assumed that shocks to real exchange rates are

uncorrelated across the different real exchange rates.  O’Connell (1996) points out that this

assumption is untenable.2  Surely shocks to the U.S./German and U.S./Swiss real exchange rates

are correlated.  O’Connell proposes estimating the system by GLS.  We address that issue here,

and show how some reasonable assumptions may allow one to reduce the number of independent

parameters in estimating the covariance matrix of real exchange rates.

The gain in power from using panel data comes when one assumes that the speed of

adjustment is the same for a number of real exchange rates.  The recent literature has typically

assumed that the speed of adjustment is the same for all real exchange rates.  Liu and Maddala

(1996) question that assumption.  Should we assume that the speed of adjustment is the same for

                                                       
1   O’Connell (1996), following suggestions in an earlier version of this paper, employs GLS to perform a panel
PPP test in a way in which the base currency is irrelevant.
2   In an early paper, Hakkio (1984) considers cross-exchange rate correlations in a system estimation of PPP.  His
paper assumes, rather than tests, stationarity.



3

the U.S./Canadian and U.S./German real exchange rates?  Davutyan and Pippenger (1990)

produce evidence that PPP holds better for countries within a continent than for countries on

separate continents.  Parsley and Wei (1996) argue that convergence to PPP should be faster for

locations within a country than for cross-country location pairs.

The recent literature also generally tends to assume homoskedasticity across real exchange

rates.  This assumption may also be untenable.  For example, the U.S./Canadian real exchange

rate appears to have a much lower innovation variance than the U.S./German real exchange rate.

Also, if we compare locations within a country to locations across borders, Engel and Rogers

(1996) provide evidence of large differences in variances of relative prices.  So, we will want to

take into account this heteroskedasticity in assessing PPP.  We will also argue that the sample

variances of innovations from our panel PPP tests may be better measures of the types of

variances that Engel (1993) or Engel and Rogers (1995, 1996) calculate.

Finally, all of the recent literature that uses data from a large number of locations is

presented in the form of panel tests of stationarity of the real exchange rate.  An alternative

approach would be to test for cointegration of price levels expressed in a common currency.  We

argue that under some plausible assumptions, the stationarity tests approach is likely to be the

more useful and powerful approach.

We lay out our approach to these issues in section 1.  Our exposition is in terms of an

eight-location example: one in which there are two cities in each of four countries, with two

countries and two different continents.  We implement this example by using consumer price data

from eight cities: New York, Los Angeles, Toronto, Vancouver, Zurich, Geneva, Frankfurt and

Cologne.  The data are monthly from September 1978 to September 1994.  The results of our

tests for PPP are presented in section 2.



4

While we find considerable differences in the variances of the real exchange rates, contrary

to the conjecture of Parsley and Wei (1996), we find essentially no evidence that the speeds of

adjustment are different for intra-national, intra-continental and inter-continental real exchange

rates.  We find that we cannot reject the null of the unit root.  Apparently, as Papell (1996),

O’Connell (1996) and Liu and Maddala (1996) argue, the gains in power from using panel data

are limited.

1.  Modeling multi-country PPP

Much of the recent literature on PPP assumes that the speed of adjustment is identical for

all real exchange rates.  We note that Liu and Maddala (1996) and Parsley and Wei (1996)

question that assumption.  But, if the speed of adjustment is not constant, an issue of modeling

consistency arises.

Take a three location example.  Each location has a log nominal price (all in the same

currency): pAt, pBt, and pCt.  Suppose we follow the practice in the literature of picking one

location to be the “base” (location A), and estimate PPP adjustment equations for pAt-pBt and pAt-

pCt.  For simplicity, we will express these as first-order autoregressions (AR1s).

(1)  ( )p p p p uAt Bt At Bt t− = + − +− −α β1 1 1 1 1

(2)  ( )p p p p uAt Ct At Ct t− = + − +− −α β2 2 1 1 2

The problem with this model is that these equations imply a stochastic process for pBt-pCt,

and it is not an AR1.  Subtract (1) from (2):

( ) ( )
( ) ( )( )

p p p p p p u u

p p p p u u

Bt Ct At Ct At Bt t t

Bt Ct At Ct t t

− = − + − − − + −

= − + − + − − + −
− − − −

− − − −

α α β β

α α β β β
2 1 2 1 1 1 1 1 2 1

2 1 1 1 1 2 1 1 1 2 1 .

Obviously, this is different than:
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(3) ( )p p p p uBt Ct Bt Ct t− = + − +− −α β3 3 1 1 3

That is, given that we thought equations (1) and (2) are a reasonable way to model pAt-pBt and

pAt-pCt, then equation (3) should be a reasonable way to model pBt-pCt.  But equations (1) and (2)

do not give us an equation for pBt-pCt that is of the same form as equation (3) unless β1 equals β2.

A moment’s thought will reveal that a consistent set of price adjustment equations must

allow for each price to respond to all others.  In this section, we will consider an eight location

example.  We will model the behavior of  pUA and pUB (prices for two U.S. cities); pCA and pCB

(prices for two Canadian cities); pGA and pGB (prices for two German cities); and, pSA and pSB

(prices for two Swiss cities).  Each of these prices is expressed in dollar terms.  One of the issues

we address below is how we can construct tests of PPP that do not depend in any way on the

currency of denomination of our prices.  We need to model at least this many prices to capture the

differences in speeds of adjustment and covariances of price shocks that will occur for intra-

national, intra-continental and intercontinental location pairs.

We begin by writing an eight-equation error correction model for these prices (we will

suppress the intercept terms in all equations in this section, but will bring them back in our

empirical work reported in section 2):

(4)  
( ) ( ) ( )

( ) ( ) ( ) ( )
p p p p p p p p

p p p p p p p p e

UAt UAt UBt UAt CAt UAt CBt UAt

GAt UAt GBt UAt SAt UAt SBt UAt t

− = − + − + −

+ − + − + − + − +
− − − − − − −

− − − − − − − −

1 12 1 1 13 1 1 14 1 1

15 1 1 16 1 1 17 1 1 18 1 1 1

δ δ δ

δ δ δ δ .

(5)  
( ) ( ) ( )

( ) ( ) ( ) ( )
p p p p p p p p

p p p p p p p p e

UBt UBt UAt UBt CAt UBt CBt UBt

GAt UBt GBt UBt SAt UBt SBt UBt t

− = − + − + −

+ − + − + − + − +
− − − − − − −

− − − − − − − −

1 21 1 1 23 1 1 24 1 1

25 1 1 26 1 1 27 1 1 28 1 1 2

δ δ δ

δ δ δ δ .

(6)  
( ) ( ) ( )

( ) ( ) ( ) ( )
p p p p p p p p

p p p p p p p p e

CAt CAt UAt CAt UBt CAt CBt CAt

GAt CAt GBt CAt SAt CAt SBt CAt t

− = − + − + −

+ − + − + − + − +
− − − − − − −

− − − − − − − −

1 31 1 1 32 1 1 34 1 1

35 1 1 36 1 1 37 1 1 38 1 1 3

δ δ δ

δ δ δ δ .
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(7)  
( ) ( ) ( )

( ) ( ) ( ) ( )
p p p p p p p p

p p p p p p p p e

CBt CBt UAt CBt UBt CBt CAt CBt

GAt CBt GBt CBt SAt CBt SBt CBt t

− = − + − + −

+ − + − + − + − +
− − − − − − −

− − − − − − − −

1 41 1 1 42 1 1 43 1 1

45 1 1 46 1 1 47 1 1 48 1 1 4

δ δ δ

δ δ δ δ .

(8)  
( ) ( ) ( )

( ) ( ) ( ) ( )
p p p p p p p p

p p p p p p p p e

GAt GAt UAt GAt UBt GAt CAt GAt

CBt GAt GBt GAt SAt GAt SBt GAt t

− = − + − + −

+ − + − + − + − +
− − − − − − −

− − − − − − − −

1 51 1 1 52 1 1 53 1 1

54 1 1 56 1 1 57 1 1 58 1 1 5

δ δ δ

δ δ δ δ .

(9)  
( ) ( ) ( )

( ) ( ) ( ) ( )
p p p p p p p p

p p p p p p p p e

GBt GBt UAt GBt UBt GBt CAt GBt

CBt GBt GAt GBt SAt GBt SBt GBt t

− = − + − + −

+ − + − + − + − +
− − − − − − −

− − − − − − − −

1 61 1 1 62 1 1 63 1 1

64 1 1 65 1 1 67 1 1 68 1 1 6

δ δ δ

δ δ δ δ .

(10)  
( ) ( ) ( )

( ) ( ) ( ) ( )
p p p p p p p p

p p p p p p p p e

SAt SAt UAt SAt UBt SAt CAt SAt

CBt SAt GAt SAt GBt SAt SBt SAt t

− = − + − + −

+ − + − + − + − +
− − − − − − −

− − − − − − − −

1 71 1 1 72 1 1 73 1 1

74 1 1 75 1 1 76 1 1 78 1 1 7

δ δ δ

δ δ δ δ .

(11)  
( ) ( ) ( )

( ) ( ) ( ) ( )
p p p p p p p p

p p p p p p p p e

SBt SBt UAt SBt UBt SBt CAt SBt

CBt SBt GAt SBt GBt SBt SAt SBt t

− = − + − + −

+ − + − + − + − +
− − − − − − −

− − − − − − − −

1 81 1 1 82 1 1 83 1 1

84 1 1 85 1 1 86 1 1 87 1 1 8

δ δ δ

δ δ δ δ .

We assume that each of the disturbance terms, eit, is stationary.

Note that we have written stochastic processes for the nominal prices rather than for the

relative prices (as in equations (1)-(3)).  We have also imposed the condition that, if the nominal

prices are cointegrated, the cointegrating vectors are (1,-1).  It is immediately apparent that if

there are seven cointegrating vectors, each equal to (1,-1), that PPP holds for all possible relative

prices.  One seemingly simple way to test for PPP, then, would be to estimate the system (4)-(11),

and investigate the cointegration properties of this system.  The price of each location is treated

symmetrically, so there can be no issue of inconsistency in the modeling of different relative

prices.

We will not adopt this approach, however.  In order to understand why, we first must

discuss the structure of the error terms in these equations.

We will model each disturbance term as being the sum of four separate stochastic terms:

e l n c wt t t t t1 1 1 1= + + + ,
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e l n c wt t t t t2 2 1 1= + + + ,

e l n c wt t t t t3 3 2 1= + + + ,

e l n c wt t t t t4 4 2 1= + + + ,

e l n c wt t t t t5 5 3 2= + + + ,

e l n c wt t t t t6 6 3 2= + + + ,

e l n c wt t t t t7 7 4 2= + + + ,

e l n c wt t t t t8 8 4 2= + + + .

The idea here is that the l’s are local disturbances, the n’s are national disturbances, the c’s

are continental disturbances, and w is a world disturbance.  All of the disturbances are mutually

independent.

The world shock, wt, is the disturbance term that affects all dollar prices.  It will be

influenced by real events that affect all locations, and by dollar nominal disturbances.  We allow wt

to follow a general stochastic process, as it is likely in particular that dollar nominal disturbances

could have a quite complicated dynamic behavior.

Each of the other disturbance terms represent relative shocks.  These are disturbances that

alter the prices relative to the overall dollar index, wt.  Throughout this paper, we will maintain

the assumption that these shocks are serially uncorrelated.  In practice, this is probably a bad

assumption.3  We make it here for simplicity.  In future work, we shall allow more general

behavior for these shocks as well.

With this structure placed on the error terms, let us return to the dynamic system for

nominal prices.  Equations (4)-(11) can be used to derive these equations for relative prices:

                                                       
3  We shall discuss some of the implications of this assumption in the conclusions.
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(12)  

( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

p p p p

p p p p p p

p p p p p p

e e

UAt UBt UAt UBt

UAt CAt UAt CBt UAt GAt

UAt GBt UAt SAt UAt SBt

t t

− = − − − − − − − − − +

− − + − − + − − +

− − + − − + − − +
−

− −

− − − − − −

− − − − − −

1 12 21 23 24 25 26 27 28 1 1

23 13 1 1 24 14 1 1 25 15 1 1

26 16 1 1 27 17 1 1 28 18 1 1

1 2

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ δ δ
.

(13)  

( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

p p p p

p p p p p p

p p p p p p

e e

UAt CAt UAt CAt

UAt UBt UAt CBt UAt GAt

UAt GBt UAt SAt UAt SBt

t t

− = − − − − − − − − − +

− − + − − + − − +

− − + − − + − − +
−

− −

− − − − − −

− − − − − −

1 13 31 32 34 35 36 37 38 1 1

32 12 1 1 34 14 1 1 35 15 1 1

36 16 1 1 37 17 1 1 38 18 1 1

1 3

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ δ δ
.

(14)  

( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

p p p p

p p p p p p

p p p p p p

e e

UAt CBt UAt CBt

UAt UBt UAt CAt UAt GAt

UAt GBt UAt SAt UAt SBt

t t

− = − − − − − − − − − +

− − + − − + − − +

− − + − − + − − +
−

− −

− − − − − −

− − − − − −

1 14 41 42 43 45 46 47 48 1 1

42 12 1 1 43 13 1 1 45 15 1 1

46 16 1 1 47 17 1 1 48 18 1 1

1 4

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ δ δ
.

(15)  

( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

p p p p

p p p p p p

p p p p p p

e e

UAt GAt UAt GAt

UAt UBt UAt CAt UAt CBt

UAt GBt UAt SAt UAt SBt

t t

− = − − − − − − − − − +

− − + − − + − − +

− − + − − + − − +
−

− −

− − − − − −

− − − − − −

1 15 51 52 53 54 56 57 58 1 1

52 12 1 1 53 13 1 1 54 14 1 1

56 16 1 1 57 17 1 1 58 18 1 1

1 5

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ δ δ
.

(16)  

( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

p p p p

p p p p p p

p p p p p p

e e

UAt GBt UAt GBt

UAt UBt UAt CAt UAt CBt

UAt GAt UAt SAt UAt SBt

t t

− = − − − − − − − − − +

− − + − − + − − +

− − + − − + − − +
−

− −

− − − − − −

− − − − − −

1 16 61 62 63 64 65 67 68 1 1

62 12 1 1 63 13 1 1 64 14 1 1

65 15 1 1 67 17 1 1 68 18 1 1

1 6

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ δ δ
.

(17)  

( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

p p p p

p p p p p p

p p p p p p

e e

UAt SAt UAt SAt

UAt UBt UAt CAt UAt CBt

UAt GAt UAt GBt UAt SBt

t t

− = − − − − − − − − − +

− − + − − + − − +

− − + − − + − − +
−

− −

− − − − − −

− − − − − −

1 17 71 72 73 74 75 76 78 1 1

72 12 1 1 73 13 1 1 74 14 1 1

75 15 1 1 76 16 1 1 78 18 1 1

1 7

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ δ δ
.
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(18)  

( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

p p p p

p p p p p p

p p p p p p

e e

UAt SBt UAt SBt

UAt UBt UAt CAt UAt CBt

UAt GAt UAt GBt UAt SAt

t t

− = − − − − − − − − − +

− − + − − + − − +

− − + − − + − − +
−

− −

− − − − − −

− − − − − −

1 18 81 82 83 84 85 86 87 1 1

82 12 1 1 83 13 1 1 84 14 1 1

85 15 1 1 86 16 1 1 87 17 1 1

1 8

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ δ δ
.

The system of equations (12)-(18) is one for relative prices, while (4)-(11) represents a

dynamic system for nominal prices.  We will work with equations (12)-(18).  This means we test

for unit roots in real exchange rates using panel data, rather than testing for no cointegration of

nominal prices.  We adopt this approach because, in equations (12)-(18), the wt disturbance is

differenced out.  We do not need to worry about the dynamic behavior of nominal shocks,

because they do not appear in the system of real prices.  If we were to attempt to estimate

equations (4)-(11), we would need to model dollar nominal shocks.  To the extent that our model

did not capture that behavior completely, our tests would depend on the currency of

denomination of the nominal prices.

Not all of the parameters of equations introduced in the system (4)-(11) are identified if

(12)-(18) are estimated.  However, there are some reasonable assumptions on equality of

parameters that allow us to achieve identification.

An important aspect of our assumptions on the parameters is that they are symmetric

across countries.  That allows us to have consistent models of relative price movements that do

not depend on which location is picked as the “base” location.  For example, if we take the

difference between equations (18) and (17), we get an equation for the relative price pSA-pSB.  We

would like the implied equation for pSA-pSB for the system where pUA is the base price to be of

exactly the same form as if we had picked pSA or pSB (or any of the other prices) as the base price.

We assume:
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δ δij ji=  for all i,j:  When there is a difference between two prices in the same country,

both prices adjust equally toward the long run.

δ δ1 2k k= , k = 3,4,…,8:  The speed of adjustment in the two U.S. cities toward each

foreign city is the same.

δ δ3 4k k= , k = 1,2,5,6,7,8: The speed of adjustment in the two Canadian cities toward

each foreign city is the same.

δ δ5 6k k= , k = 1,2,3,4,7,8: The speed of adjustment in the two German cities toward each

foreign city is the same.

δ δ7 8k k= , k = 1,2,…,6: The speed of adjustment in the two Swiss cities toward each

foreign city is the same.

δ δ13 14= :  The speed of adjustment for U.S. city A toward each of the two Canadian

cities is the same.  Note that, using the assumptions already made, this assumption implies

δ δ δ δ δ δ23 24 31 41 32 42= = = = = .

δ δ57 58= :  The speed of adjustment for German city A toward each of the two Swiss

cities is the same.  Note that, using the assumptions already made, this assumption implies

δ δ δ δ δ δ67 68 75 85 76 86= = = = = .

δ δ15 16= :  The speed of adjustment for U.S. city A toward each of the two German cities

is the same.  Note that, using the assumptions already made, this assumption implies

δ δ δ δ δ δ25 26 51 61 52 62= = = = = .

δ δ17 18= :  The speed of adjustment for U.S. city A toward each of the two Swiss cities is

the same.  Note that, using the assumptions already made, this assumption implies

δ δ δ δ δ δ27 28 71 81 72 82= = = = = .
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δ δ35 36= :  The speed of adjustment for Canadian city A toward each of the two German

cities is the same.  Note that, using the assumptions already made, this assumption implies

δ δ δ δ δ δ45 46 53 63 54 64= = = = = .

δ δ37 38= :  The speed of adjustment for Canadian city A toward each of the two Swiss

cities is the same.  Note that, using the assumptions already made, this assumption implies

δ δ δ δ δ δ47 48 73 83 74 84= = = = = .

These assumptions reduce the number of different δ ’s to 10:

δ δ δ δ δ δ δ δ δ12 34 56 78 13 15 17 35 37, , , , , , , , ,  and δ57 .   One more set of assumptions reduces the

number to three: δ δ δ δ12 34 56 78= = =, ;  δ δ13 57= ; δ δ δ δ15 17 35 37= = = .   These assumptions are,

first, that all within country speeds of adjustment are the same; that all adjustments across

countries within the same continent are the same; and, that all cross-continent adjustments are the

same.

Imposing all of the restrictions, equations (12)-(18) become:

(19)  ( )( )p p p p e eUAt UBt UAt UBt t t− = − − − − + −− −1 2 2 412 13 15 1 1 1 2δ δ δ .

(20)  
( )( ) ( )( )

( )( )
p p p p p p

p p e e

UAt CAt UAt CAt UAt UBt

UAt CBt t t

− = − − − − + − −

+ − − + −
− − − −

− −

1 3 413 12 15 1 1 13 12 1 1

12 13 1 1 1 3

δ δ δ δ δ

δ δ .

(21)  
( )( ) ( )( )

( )( )
p p p p p p

p p e e

UAt CBt UAt CBt UAt UBt

UAt CAt t t

− = − − − − + − −

+ − − + −
− − − −

− −

1 3 413 12 15 1 1 13 12 1 1

12 13 1 1 1 4

δ δ δ δ δ

δ δ .

(22)  

( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( )

p p p p p p

p p p p p p

p p p p e e

UAt GAt UAt GAt UAt UBt

UAt CAt UAt CBt UAt GBt

UAt SAt UAt SBt t t

− = − − − − + − −

+ − − + − − + − −

+ − − + − − + −

− − − −

− − − − − −

− − − −

1 5 215 12 13 1 1 15 12 1 1

15 13 1 1 15 13 1 1 12 15 1 1

13 15 1 1 13 15 1 1 1 5

δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ .
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(23)  

( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( )

p p p p p p

p p p p p p

p p p p e e

UAt GBt UAt GBt UAt UBt

UAt CAt UAt CBt UAt GAt

UAt SAt UAt SBt t t

− = − − − − + − −

+ − − + − − + − −

+ − − + − − + −

− − − −

− − − − − −

− − − −

1 5 215 12 13 1 1 15 12 1 1

15 13 1 1 15 13 1 1 12 15 1 1

13 15 1 1 13 15 1 1 1 6

δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ .

(24)  

( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( )

p p p p p p

p p p p p p

p p p p e e

UAt SAt UAt SAt UAt UBt

UAt CAt UAt CBt UAt GAt

UAt GBt UAt SBt t t

− = − − − − + − −

+ − − + − − + − −

+ − − + − − + −

− − − −

− − − − − −

− − − −

1 5 215 13 12 1 1 15 12 1 1

15 13 1 1 15 13 1 1 13 15 1 1

13 15 1 1 12 15 1 1 1 7

δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ .

(25)  

( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( )

p p p p p p

p p p p p p

p p p p e e

UAt SBt UAt SBt UAt UBt

UAt CAt UAt CBt UAt GAt

UAt GBt UAt SAt t t

− = − − − − + − −

+ − − + − − + − −

+ − − + − − + −

− − − −

− − − − − −

− − − −

1 5 215 13 12 1 1 15 12 1 1

15 13 1 1 15 13 1 1 13 15 1 1

13 15 1 1 12 15 1 1 1 8

δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ .

 Note that the consistency condition holds here: the implied real exchange rate adjustment

equations for within country relative prices (pCA-pCB, pGA-pGB, pSA-pSB) all take the same form as

equation (19).  Equations (20) and (21) are symmetric equations for U.S./Canada relative prices.

The implied equations for German/Swiss prices are also exactly like equations (20) and (21).

Equations (22)-(25) are symmetric equations for U.S./European city pairs.  The implied equations

for all other cross-continental city pairs take this form.

It is helpful to write equations (19)-(25) in vector notation:

(26)  pt = Γ pt-1 + et,

where pt = 

p p

p p

p p

p p

p p

p p

p p

UAt UBt

UAt CAt

UAt CBt

UAt GAt

UAt GBt

UAt SAt

UAt SBt

−
−
−
−
−
−
−





























,
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et = 

e e

e e

e e

e e

e e

e e

e e

t t

t t

t t

t t

t t

t t

t t

2 1

3 1

4 1

5 1

6 1

7 1

8 1

−
−
−
−
−
−
−





























, and,

Γ =

− −
− −
− − − − − −
− − − − − −
− − − − − −
− − −

A

B

B

C

C

C

0 0 0 0 0 0

0 0 0 0

0 0 0 0
13 12 12 13

13 12 12 13

15 12 15 13 15 13 12 15 13 15 13 15

15 12 15 13 15 13 12 15 13 15 13 15

15 12 15 13 15 13 13 15 13 15 12 15

15 12 15 13 15 13 13

δ δ δ δ
δ δ δ δ
δ δ δ δ δ δ δ δ δ δ δ δ
δ δ δ δ δ δ δ δ δ δ δ δ
δ δ δ δ δ δ δ δ δ δ δ δ
δ δ δ δ δ δ δ − − −



























δ δ δ δ δ15 13 15 12 15 C

,

where A = − − −1 2 2 412 13 15δ δ δ ,  B = − − −1 3 412 13 15δ δ δ ,  C = − − −1 2 512 13 15δ δ δ .

Let Λ  be the diagonal matrix of eigenvalues for Γ :

Λ =





























λ
λ

λ
λ

λ
λ

λ

1

1

1

1

2

2

3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

,

where λ δ δ δ1 12 13 151 2 2 4= − − − , λ δ δ2 13 151 4 4= − − , and λ δ3 151 8= − .

We can write Γ Λ= −G G1 , where G is the matrix of row eigenvectors.  We have:
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G =

−
−

−
−

− −
− − −





























1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1

5 5 5 0 0 0 0

0 0 0 5 5 5 5

25 25 25 25 25 25 25

. . .

. . . .

. . . . . . .

.

Of course, each of the rows of this matrix is defined only up to a constant of proportionality.

We can write the system as:

(27)  pt = G G−1Λ pt-1 + et.

Pre-multiply by G, and we get:

(28)  zt = Λ zt-1 + ut,

where zt = G pt = 

( ) ( )
( ) ( )

( ) ( )

p p

p p

p p

p p

p p p p

p p p p

p p p p p p p p

UAt UBt

CAt CBt

GAt GBt

SAt SBt

UAt UBt CAt CBt

GAt GBt SAt SBt

UAt UBt CAt CBt GAt GBt SAt SBt

−
−
−
−

+ − +
+ − +

+ + + − + + +





























. .

. .

. .

5 5

5 5

25 25

,

and,

ut = Get = 

( ) ( )
( ) ( )

( ) ( )

e e

e e

e e

e e

e e e e

e e e e

e e e e e e e e

t t

t t

t t

t t

t t t t

t t t t

t t t t t t t t

2 1

4 3

6 5

8 7

3 4 1 2

7 8 5 6

5 6 7 8 1 2 3 4

5 5

5 5

25 25

−
−
−
−

+ − +
+ − +

+ + + − + + +





























. .

. .

. .

.

Equation (28) shows that we can rewrite the system of equations as seven AR1 equations

– one for each of the within-country relative prices; one for the average of the U.S. prices relative

to the average of the Canadian prices; one for the average of the German prices relative to the
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average of the Swiss prices; and, one for the average of the North American prices relative to the

average of the European prices.

The three distinct eigenvalues correspond to the three speeds of adjustment:4

2 2 412 13 15δ δ δ+ +  ( = −1 1λ ) is the speed of convergence within country borders; 4 413 15δ δ+

( = −1 2λ ) is the speed of convergence across country borders but within continents; and, 8 15δ

( = −1 3λ ) is the speed of convergence across continents.  Parsley and Wei (1996) argue that

within-country speeds of adjustment are likely to be higher than cross-country speeds, so we

allow these to be different.  Davutyan and Pippenger (1990) and Liu and Maddala (1996) argue

that speeds of convergence may be different for countries within continents than for cross-country

continent pairs.  In our set-up, we account for this because we do not impose λ λ1 2= .

The fact that we consider things in twos – two continents, two countries per continent,

two cities per country – gives a particularly nice structure to the diagonalized system.  Of course,

any diagonalization will result in a system of AR1 equations.  Our system has a simple

interpretation, and there is also a simple structure to the error covariance matrix.

Given the structure we put on the stochastic disturbances, we can write:

ut =

( ) ( )
( ) ( )

( ) ( ) ( )

l l

l l

l l

l l

l l l l n n

l l l l n n

l l l l l l l l n n n n c c

t t

t t

t t

t t

t t t t t t

t t t t t t

t t t t t t t t t t t t t t

2 1

4 3

6 5

8 7

3 4 1 2 2 1

7 8 5 6 4 3

5 6 7 8 1 2 3 4 3 4 1 2 2 1

5 5

5 5

25 25 5

−
−
−
−

+ − + + −
+ − + + −

+ + + − + + + + + − − + −





























. .

. .

. . .

.

Note that the first four elements of ut are contemporaneously uncorrelated, as are the fifth and

sixth elements.

                                                       
4  Cogley and Spiegel (1996) associate the speed of convergence in panel data to the eigenvalues of the system.



16

We now assume that the variances of the local shocks within countries are equal:

( ) ( )Var l Var lt t2 1= ,

( ) ( )Var l Var lt t4 3= ,

( ) ( )Var l Var lt t6 5= , and

( ) ( )Var l Var lt t8 7= .

With those assumptions, the first four elements are also uncorrelated with the fifth, sixth

and seventh elements.  So, the first four elements are each uncorrelated with all other elements.

The only elements of ut that are correlated are the fifth and the sixth with the seventh.  The

covariance matrix of ut, denoted Σ , can be written as:

(29)  Σ =





























σ
σ

σ
σ

σ σ
σ σ

σ σ σ

11

22

33

44

55 57

66 67

57 67 77

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

,

where σ ii  is the variance of the ith element of ut and σ ij  is the covariance of the ith and jth

elements.  This structure on the covariance matrix greatly simplifies the GLS estimation

performed in the next section, and increases the speed of the Monte Carlo simulations

considerably.

Note that we allow heteroskedasticity in the errors.  The disturbance in each of the first

four equations is the relative local shock, which is allowed to have a different variance in each

country.  The fifth element of ut is composed of the average local shocks plus the national shock

in Canada less the average local shock plus the national shock in the U.S.  Its variance is

permitted to be different than that for the sixth element of ut: the average local shock plus the
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national shock in Switzerland less the average local shock plus the national shock in Germany.

One would expect the seventh term to have the highest variance, since it involves shocks to

relative cross-continent prices: the average local and national shocks plus the continental shock in

Europe less the average local and national shocks added to the continental shock in North

America.

A consistency condition holds for our covariance matrix, much like the one we describe as

holding for equations (19)-(25).  If we calculate the implied variance of any relative price that is

not explicitly in the system we estimate, equation (28), (for example, the variance of pSAt-pUAt), or

the implied covariances of any two relative prices that are not explicitly in our system, they will

have characteristics which are consistent with the assumptions we have made on Σ .  For

example, as one would expect from the assumptions we have made, the implied variance of pSAt-

pUAt equals the implied variance of pSB-pUAt.
5

Since we model the dynamics of relative prices as a system, it is possible that we will

estimate the innovation of these prices more accurately than using single equation methods.  Engel

(1993) and Engel and Rogers (1996) compare the variance of within country and cross-country

relative prices, but take the sample variance of the innovations from univariate processes for the

relative prices.

To summarize our answers to the questions posed in the introductory paragraph: (1) Our

model of  PPP adjustment treats all relative prices in a consistent way.  We achieve this by writing

a general structure of price adjustment and making symmetric restrictions.  (2)  We handle cross-

correlation through GLS estimation.  The covariance matrix of the diagonalized system is

particularly simple.  (3)  We allow for different speeds of adjustment for within-country, within-

                                                       
5   O’Connell (1996)  performs GLS estimation with an unrestricted covariance matrix, so his estimation satisfies
these type of consistency conditions.
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continent and cross-continent city pairs.  (4)  We allow for heteroskedastic errors.  (5)  We find

that unit root tests of relative prices have the advantage of differencing out nominal shocks.

2.  Empirical Results

We estimate the system given by equations (28) and (29) using monthly price data from

September 1978 to September 1994, for eight cities: Los Angeles, New York, Toronto,

Vancouver, Frankfurt, Cologne, Zurich and Geneva.  The price data is converted into U.S. dollar

terms, using monthly average exchange rates, before relative prices are computed.  The data

sources are described in the Data Appendix.

We estimate the parameters of (28) and (29) by generalized least squares (GLS).  The first

four equations of (28) are independent of the last three, and are treated separately.  O’Connell

(1996) demonstrates that in small samples, the GLS estimates allow much more powerful tests of

the unit root null hypothesis than if we were to estimate system (28) by ordinary least squares.

     As a first step, we estimate the first four equations as a panel, with different intercept

coefficients but the same slope (l ) using ordinary least squares (OLS).  We use the residuals from

the OLS regressions to construct the estimated Σ  matrix for GLS estimation.  Here, we constrain

all the off-diagonal terms to be zero.  We save the residuals from the GLS estimates to form a

second round estimate of Σ .  We iterate a total of five times.

     The last three equations are estimated in essentially the same way as the first four.  First,

we take an OLS estimate of the panel, allowing different intercepts across the three equations, and

constraining the slope coefficient on the two intra-continental relative price regressions (λ 2  ) to



19

be equal.  We use the residuals to construct an estimate of Σ , which we use for the GLS

estimator.  Here, we constrain the disturbances to the intra-continental price equations to be

uncorrelated, but allow the other covariances to be non-zero (as in the bottom 3 × 3 block of

equation (29)).  We iterate five times.6

     Table 1 reports the estimates of the slope coefficients λ1 , λ 2 , and λ 3 .  Recall 1- λ1  is the

speed of adjustment for within-country relative prices; 1- λ 2   is the speed of adjustment for

relative prices across countries within the same continent; and, 1- λ 3  is the speed of adjustment

for relative prices across continents.  The point estimates are all very similar.  We shall return to

the question of statistical significance momentarily, but the numerical similarity of these estimates

certainly suggests that there is not much economic difference in these speeds of adjustment.

     From the estimates of λ1 , λ 2 , and λ 3 , we can calculate δ12 , δ13 , and δ15  from equations

(12)-(18).  We find δ12  = 0.00107; δ13  = 0.00381; and δ15  = 0.00127.

      Table 1 also reports the estimates of the (square roots of the) diagonal elements of Σ .

These turn out as expected:  the variances for within-country city pairs are the smallest; the

variance for the average of North American prices relative to the average of European prices is

the largest; and, the two intra-continental variances lie in between.  There is clearly evidence of

heteroskedasticity:  the inter-continental variance is more than twice as large as the intra-

continental variances.  These, in turn, are both at least twice as large as each of the four intra-

national variances.  The differences in the volatility of these relative prices can easily be seen in

Figures 1, 2 and 3.  Figure 1 plots the average of North American prices relative to European

prices (the "intra-planetary" relative price.)  Figure 2 plots the U.S./Canada and

                                                       
6   In practice, we actually calculate the GLS estimate by a complicated weighted average least squares estimate
which is computationally much faster than blindly applying the GLS formula.
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Germany/Switzerland relative prices (the "intra-continental" relative prices.)  The intra-national

relative prices are plotted in Figure 3.

     These variances tend to confirm the findings of Engel (1993) and Engel and Rogers

(1996) -- intra-country relative prices are much less variable than cross-country relative prices.

Those studies explain some of that difference by the fact that intra-country relative prices do not

involve a nominal exchange rate.  If nominal prices are sticky and the nominal exchange rate is

highly variable, than cross-country prices will be more volatile than within country prices.  Note,

however, that the same pattern appears when comparing intra-continental to cross-continental

relative price pairs: the intra-continental prices have lower variance.7  Both of these sets of

relative prices involve nominal exchange rates.  Some authors (notably Barro (1993, 441-449))

have argued that this pattern is evidence of relative homogeneity of supply shocks within

continents compared to across continents.  While this is one potential explanation, we note that

the within-continent nominal exchange rates are much less variable than the cross-continent

nominal exchange rates, so the sticky-price story remains a viable alternative.  Nonetheless, Engel

and Rogers (1995) argue that the volatility of the nominal exchange rate cannot explain all of the

difference between the variances of intra- and cross-continental relative prices.

     We are interested in whether this data could have been generated by unit root processes.

To answer this question, we perform Monte Carlo exercises.  We construct 5000 replications of a

7-vector of unit root series, each with 193 observations as in our actual data.  These matrices of

unit root series are generated with N(0, Σ ) random errors, where Σ  is given by our estimate of

the covariance matrix.  With each of these 5000 series we repeat our estimation procedure.  We

record the fraction of times the estimated λ i  from our artificial series is less than the estimated λ i

from the actual data to get p-values for each λ i .

                                                       
7  See, for example, Engel and Rogers (1995).



21

     These p-values are reported in Table 1.  It is clear that we cannot reject the unit root

hypothesis for any of the λ i  at conventional levels of significance.

      The fact that there is so little evidence against λ i  = 1 for each of i = 1, 2 and 3 suggests

that it is not possible to reject the hypothesis that the λ i  are all equal.  Hence, we reestimate the

seven-equation system (28), imposing that all the slope coefficients are equal, but allowing

different intercepts in each equation.  We follow the same GLS procedure as above, and use the

same Monte Carlo procedure to test the null that λ  = 1.

     These results are also reported in Table 1.  Not surprisingly, not much in our inference

changes.  The estimated λ  is numerically very close to the estimated λ i s when we allowed λ1 ,

λ 2  and λ 3  to be different.  The estimated variances are nearly unchanged.  And, we still find

virtually no evidence against the unit root null.  The p-value is around 0.58.  However, note that

the estimate of λ  is consistent with much of the recent literature on PPP, including the literature

that rejects unit roots.  The estimated half-life of the relative prices is about four years.  Perhaps

this is evidence that our tests are not exceptionally powerful -- they find the same point estimate

of λ  as the rest of the literature, but cannot reject the null that λ equals one.

3.  Conclusions

     We have attempted to resolve several outstanding issues in panel PPP tests.  While we

believe we have, at a theoretical level, found satisfactory solutions to the problems, our actual

tests of PPP leave a major unanswered question:  Why do we fail to reject unit roots in real

exchange rates, when other tests have successfully rejected this null?
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     On the one hand, it is tempting to conclude that the other tests -- which did not pay

sufficient attention to heteroskedasticity, to correlation of errors, and to the choice of base

currency; and, which forced speeds of adjustment to be equal for all real exchange rates --

spuriously rejected unit roots because of these shortcomings of their tests.  This is the implication

of the criticisms raised by O’Connell (1996), Papell (1996) and Liu and Maddala (1996).  Since

our tests properly account for these issues, one could argue that our tests are more reliable.

     On the other hand, we must weigh against this that our tests may be less powerful.  We

have a smaller cross-section than much of the other literature (such as Frankel and Rose (1996),

Oh (1996), Parsley and Wei (1996) and Wu (1996).)  That certainly diminishes the power of our

tests.  Also, as we mentioned earlier, we assume the error terms in equation (28) are white noise.

But, Papell (1996) highlights the importance of the residual correlation for tests of unit roots in

real exchange rates.8

     Finally, the simple fact that the data is different could account for the different

conclusions.  This is consistent with the findings of Papell (1996) and Liu and Maddala (1996).

They find that panels of real exchange rates for some groups of countries appear to be stationary,

and others appear to have unit roots, even when the panels are the same size and length.  It may

be that this occurs because those authors have not sufficiently allowed for correlation of

innovations, as we have attempted to do in this paper.  But, Engel (1996) raises the issue that

standard tests of PPP are more likely to falsely reject the presence of a unit root when there is a

stationary component that dominates the dynamics of the movement of the real exchange rate in

the short run.  Within-country relative prices across cities are not very volatile.  Perhaps with our

                                                       
8   In fact, however, in his examples insufficient modeling of the serial correlation in the residuals
biases the tests toward rejection of the unit root null.
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city data this stationary component is not so prominent, and the data more nearly follow a pure

random walk.

     So, in the future, we hope to expand the panel to a larger number of cities, and to address the

issue of higher order serial correlation.  The present study should be considered an exploratory

venture into the city-based approach to panel PPP testing.
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Data Appendix

     The price and exchange rate data used in the paper are monthly, spanning the period 9/78

-9/94.  The exchange rate is a monthly average rate, and was obtained from the IMF’s

International Financial Statistics database.

     The data were obtained from a variety of sources.  The data for Los Angeles and New

York are the monthly consumer price indexes from the U.S. Bureau of Labor Statistics.  The data

for Toronto and Vancouver are also the monthly consumer price indexes for those cities, and was

obtained from Statistics Canada.  The Swiss price data are the monthly CPIs for Zurich and

Geneva.  These data were obtained from the Swiss Federal Statistical Office.  Finally, the German

price data are cost-of-living indexes.  These data are computed by Lander (State).  Thus, the data

for Frankfurt and Cologne are, respectively, the monthly cost-of-living index for Hesse and

Northrhine-Westphalia.  These data were obtained directly from the state statistical offices.
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              Table 1

                         Generalized Least Squares Estimates and 5000 Draw Monte Carlo Simulation Results

System λ i p-value s.d.’s intercepts price adjustment equation for:

3-equation 0.989876 0.7870 0.029617 0.006986 N. America relative to Europe

0.979688 0.4734 0.011127 0.007901 US relative to Canada
0.012646 0.001729 Germany relative to Switzerland

4-equation 0.985164 0.6218 0.004869 -0.000204 Los Angeles relative to New York
0.003989 0.000143 Toronto relative to Vancouver
0.001413 0.000185 Frankfurt relative to Cologne
0.003323 0.000027 Geneva relative to Zurich

7-equation 0.984674 0.5820 0.029595 0.010519 N. America relative to Europe
0.011119 0.006123 US relative to Canada
0.012652 0.001260 Germany relative to Switzerland
0.004868 -0.000209 Los Angeles relative to New York
0.003989 0.000143 Toronto relative to Vancouver
0.001414 0.000188 Frankfurt relative to Cologne
0.003323 0.000025 Geneva relative to Zurich
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Figure 1   Average "Intra-Planetary" Relative Price
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Deviations from Group Sample Mean
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Figure 3   "Intra-National" Relative Prices

Deviations from Group Sample Mean


